Supporting Information

Synthetic Studies of Antitumor Natural Products Superstolides A and B. Construction of C20-C26 Fragment of Superstolide A

Wensheng Yu, Yan Zhang and Zhendong Jin*

Division of Medicinal and Natural Products Chemistry
College of Pharmacy
The University of Iowa
Iowa City, IA 52242
zhendong-jin@uiowa.edu

General Procedure

All moisture-sensitive reactions were performed in flame-dried glassware under positive pressure of nitrogen or argon. THF and ether were freshly distilled from sodium benzophenone ketyl. CH_2Cl_2 was distilled from CaH_2 . Et_3N was distilled from CaH_2 . Solvent for TLC and flash column chromatography was hexane with different ratio of ethyl acetate.

Experimental Section:

Compound 11. To a solution of ethyl (S)-(-)-lactate (5 mL, 44.1 mmol) in anhydrous CH_2CI_2 (200 mL) was added para-methoxy benzyl trichloroacetimidate $(57.33 \text{ mL}, 1 \text{M} \text{ in } CH_2CI_2, \text{ containing } 3\% \text{ DBU}, 57.33 \text{ mmol})$ under nitrogen. CSA (1.06 g, 4.59 mmol) was added in one portion and the solution was stirred at 25 °C for 2 hours. The reaction was quenched with saturated aqueous NaHCO₃ (70 mL). The organic layer was separated and the water layer was extracted by CH_2CI_2 (50 mL) for three times. The combined organic layer was washed with brine and dried over Na_2SO_4 . The solvent was

removed and the product was purified with silica gel column chromatography to afford **11** (9.57 g, 91%) as colorless oil. [α]²⁵_D-9.36° (c 1.1, CHCl₃); HR CIMS m/z 256.1552 (M+NH₄)+, calcd for C₁₃H₂₂NO₄: 256.1549; ¹H NMR (CDCl₃) δ (ppm) 7.30 (d, J = 8.2 Hz, 2H), 6.88 (d, J = 8.2 Hz, 2H), 4.63 (d, J = 11.5 Hz, 1H), 4.39 (d, J = 11.5 Hz, 1H), 4.22 (qd, J = 6.8, 1.8 Hz, 2H). 4.05 (q, J = 6.8 Hz, 1H), 3.79 (s, 3H), 1.42 (d, J = 6.8 Hz, 3H), 1.30 (q, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃) δ (ppm) 173.3, 159.3, 129.7, 129.6, 113.8, 73.69, 71.6, 60.8, 55.3, 18.7, 14.2.

Compound 9. To a solution of **11** (7.1 g, 29.8 mmol) in CH₂Cl₂ (150 mL) was added DIBAL (1 M in CH₂Cl₂, 44.7 mL, 44.7 mmol) under nitrogen at -98 °C (Methanol/dry ice bath). The reaction was stirred at -98 °C for 1 hour and then was quenched with ethyl acetate (5 mL). Saturated aqueous sodium potassium tartrate (150 mL) was added and the reaction was allowed to warm up to room temperature. The organic layer was separated and the water layer was extracted by CH₂Cl₂ (50 mL) for three times. The combined organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed and the product was purified with silica gel column chromatography to afford **9** (5.207g, 90%) as colorless oil. [α]²⁴_D -38.9 ° (c 2.96, CHCl₃); HR CIMS m/z 212.1267 (M+NH₄)+, calcd for C₁₁H₁₈NO₃: 212.1287; ¹H NMR (C₆D₆) δ (ppm) 9.40 (d, J = 1.8 Hz, 1H), 7.10 (d, J = 6.8 Hz, 2H), 6.76 (d, J = 6.8 Hz, 2H), 4.25 (d, J = 11.5 Hz, 1H), 4.18 (d, J = 11.5 Hz, 1H), 3.44 (qd, J = 6.8, 2.2 Hz, 1H). 3.28 (s, 3H), 0.98 (d, J = 6.8 Hz); ¹³C NMR (C₆D₆) δ (ppm) 202.5, 159.9, 130.1, 129.7, 114.1, 79.3, 71.6, 54.7, 15.2.

3

Compound 13. A balloon was charged with about 800 mL of trans-butene and was connected to a 250 mL flame-dried flask merged in dry ice/acetone bath (-78 °C) through a 12 inch needle. The trans-butene was released slowly to the flask. After all the rans-butene was released, the balloon was removed, and t-BuOK (1 M in THF, 27.89 mL) and n-BuLi (2.28 M in hexane, 12.2 mL) was added very slowly in -78 °C. The solution was then stirred at -45 °C for 10 min and cooled to -78 °C again. (-)-B-Methoxy-diisopinocampheyborane (8.82 g, 27.89 mmol) in ether (25 mL) was cannulated to the above solution and the reaction was stirred at -78 °C for 30 min. BF₃·Et₂O (4.7 mL, 37.09 mmol) was added followed by the addition of 9 (3.87 g, 19.9 mmol) in ether (20 mL, washed with 5 mL ether once). After the reaction solution was stirred at -78 °C for three hours, pentane (150 mL) and ethanol amine (3 mL, 41.84 mmol) was added and the reaction was allowed to warmed up to 25 °C. After the reaction was stirred at 25 °C for 2 hours, the stirring was stopped and the reaction solution was allowed to sit for 30 minutes. The reaction solution was filtered through a thin layer of celite and the solid was washed by pentane (30 mL) three times. The solvent was removed and the reaction mixture was separated by silica gel chromatography to give a mixture of 9 and 3-pinanol in the molar ratio of 1:0.6. This mixture was dissolved in anhydrous CH₂Cl₂ (50 mL). Et₃N (5 mL, 36 mmol) and TBSOTf (6.3 mL, 27.47 mmol) was added at -30 °C. The reaction was stirred at -30 °C for 1 hour and was quenched with saturated aqueous NaHCO3 (70 mL). The organic layer was separated and the water layer was extracted by CH₂Cl₂ (10 mL) for three times. The combined organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed and the product was purified with silica gel column chromatography to afford 13 (4.72 g, 65% from **9**) as colorless oil. [α]²⁴_D +7.4° (c 4.5, CHCl₃); HR CIMS m/z 382.2787 (M+NH₄)+, calcd for $C_{21}H_{40}NO_3Si$: 382.2777; ¹H NMR (CDCl₃) δ (ppm) 7.26 (d, J = 8.2 Hz, 2H), 6.87 (d, J = 8.2 Hz, 2H), 5.92 (m, 1H), 4.98 (d, J = 8.2 Hz, 2H), 5.92 (m, 1H), 5.92 (m, = 17.3 Hz, 1H), 4.96 (d, J = 10.3 Hz, 1H), 4.49 (d, J = 11.5 Hz, 1H), 4.43 (d, J = 11.5 Hz, 1H), 3.80 (s, 3H), 3.51 (m, 1H), 3.41 (m, 1H), 2.43 (m, 1H), 1.11 (d, J =7.0 Hz, 1H), 1.06 (d, J = 7.0 Hz, 1H), 0.90 (s, 9H), 0.03 (s, 3H), -0.01 (s, 3H); ¹³C NMR (CDCl₃) δ (ppm) 173.3, 159.3, 129.7, 129.6 (2C), 113.8 (2C), 73.69, 71.6, 60.8, 55.3, 18.7, 14.2.

Compound 7. To a solution of **13** (296.1 mg, 0.812 mmol) in dioxane-water (3:1, 8 mL) was added 2,6-lutidine (0.192 mL, 1.65 mmol), OsO₄ (2.5% in 2-methyl-2-propanol, 162 mg, 0.016 mmol), and NalO₄ (704 mg, 3.29 mmol). The reaction was stirred at 25 °C for 2 hours, and water (10 mL) and CH₂Cl₂ (20 mL) was added. The organic layer was separated and the water layer was extracted by CH₂Cl₂ (10 mL) for three times. The combined organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed and the product was purified with silica gel column chromatography to afford **7** (268.1 mg, 90%) as colorless oil. [α]²⁴_D-22.7° (c 0.68, CHCl₃); HR CIMS m/z 384.2535 (M+NH₄)+, calcd for C₂₀H₃₈NO₄Si: 384.2570; ¹H NMR (CDCl₃) δ (ppm) 9.77 (d, J = 2.9 Hz, 1H), 7.24 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 4.53 (d, J = 11.9 Hz, 1H), 4.40 (d, J = 11.9 Hz, 1H), 3.88 (t, J = 4.5 Hz, 1H), 3.81 (s, 3H), 3.56 (m, 1H), 2.65 (m, 1H), 1.18 (d, J = 6.5 Hz, 3H), 1.13 (d, J = 7.2 Hz, 3H), 0.86 (s, 9H), 0.04 (s, 3H), -0.02 (s, 3H); ¹³C NMR (CDCl₃) δ (ppm) 202.8, 159.7, 131.0, 129.4, 114.0, 77.2, 76.8, 70.8, 54.7, 48.8, 26.0, 18.3, 14.8, 12.4, -4.1, -4.7.

Compounds 16 and 17. A balloon was charged with about 60 mL of *trans*-butene and was connected to a 25 mL flame-dried flask merged in dry ice/acetone bath (-78 °C) through a 12 inch needle. The *trans*-butene was released slowly to the flask. After all the *trans*-butene was released, the balloon was removed and *t*-BuOK (1 M in THF, 1.6 mL) and *n*-BuLi (2.28 M in hexane, 0.7 mL) was added very slowly in -78 °C. The solution was then stirred

A

at -45 °C for 10 min and cooled to -78 °C again. (+)-B-Methoxy-diisopinocampheyborane (510 mg, 1.6 mmol) in ether (3 mL) was cannulated to the above solution and it was stirred at -78 °C for 30 min. BF₃·Et₂O (0.264 mL, 2.08 mmol) was added followed by addition of **13** (370 mg, 1.01 mmol) in ether (2 mL, washed with 0.5 mL ether once). After the reaction solution was stirred at -78 °C for three hours, NaOH (10% in water, 0.64 mL) was added and the reaction was allowed to warm up to 25 °C.1 H₂O₂ (37%, 1 mL) was added and a condenser was attached. The reaction solution was heated to 40 °C for 12 hours. NaOH (10% in water, 1 mL) was added and the solution was stirred at 25 °C for 30 min. Water (3 mL) and ether (3 mL) was added. The organic layer was separated and the water layer was extracted by ether (5 mL) for three times. The combined organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed and the product was purified with silica gel column chromatography to afford **16** (302 mg, 71%) and **17** (50.1 mg, 11%).

16: colorless oil, $[\alpha]^{23}_{D}$ +16.4° (c 0.73, CHCl₃); HR ESIMS m/z 445.2719 (M+Na)+, calcd for C₂₄H₄₂NaO₄Si: 445.2745; ¹H NMR (CDCl₃) δ (ppm) 7.24 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 5.89 (m, 1H), 5.10 (d, J = 17.3 Hz, 1H), 5.07 (d, J = 10 Hz, 1H), 4.52 (d, J = 11.4 Hz, 1H), 4.43 (d, J = 11.4 Hz, 1H), 3.80 (s, 3H), 3.71 (dd, J = 7.0, 3.2 Hz, 1H), 3.66~3.61 (m, 2H), 2.26 (m, 1H), 1.91 (m, 1H), 1.14 (d, J = 6.2 Hz, 3H), 1.04 (d, J = 7.1 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H), 0.88 (s, 9H), 0.064 9s, 3H), 0.003 (s, 3H). 1.14 (d, J = 6.2 Hz, 3H), 1.04 (d, J = 7.1 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H), 0.88 (s, 9H), 0.06 (s, 3H), 0.00 (s, 3H); ¹³C NMR (CDCl₃) δ (ppm) 159.0, 142.5, 130.9, 129.0, 114.3, 113.6, 81.0, 77.6, 74.8, 70.6, 55.2, 41.3, 34.8, 26.1, 18.3, 16.3, 15.6, 11.1, -4.0, -4.7.

17: colorless oil, ¹H NMR (CDCl₃) δ (ppm) 7.24 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.5 Hz, 2H), 5.56 (m, 1H), 5.06 (d, J = 17.0 Hz, 1H), 4.97 (d, J = 10.3 Hz, 1H), 4.52 (d, J = 11.4 Hz, 1H), 4.41 (d, J = 11.4 Hz, 1H), 3.80 (s, 3H), 3.63~3.57 (m, 2H), 3.48 (q, J = 7.0 Hz, 1H), 2.27 (m, 1H), 1.89 (m, 1H), 1.10 (m, 6H), 1.03 (d, J = 7 Hz, 3H), 0.88 (s, 9H), 0.064 9s, 3H), 0.003 (s, 3H). 1.18 (d, J = 6.5 Hz, 3H), 1.13 (d, J = 7.2 Hz, 3H), 0.88 (s, 3H), 0.06 (s, 3H).

¹ Addition of excess base leaded to the vigorous decomposition of H₂O₂, therefore lead to low yield of the product.

Compounds 18 and 19. To a solution of 16 (20 mg) or 17 (20 mg) in THF was added TBAF in THF (1M in THF, 1.2 equiv.) at 25 °C and the reaction was stirred at 25 °C for 2 hours. Solvent was removed and the products were purified with silica gel column chromatography to afford the corresponding alcohol in about 85% yield. The alcohol was dissolved in CH₂Cl₂. 2,2-Methoxypropane (3 equiv.) and CSA (catalytic amount) were added. After the reaction was stirred at 25 °C for 30 min, the solvent was removed and the product was purified with silica gel column chromatography to afford 18 (from 16) and 19 (from 17) in about 80% yield for two steps.

18: colorless oil, ¹H NMR (CDCl₃) δ (ppm) 7.27 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 5.86 (m, 1H), 5.06 (d, J = 17.3 Hz, 1H), 4.98 (d, J = 10.4 Hz, 1H), 4.61 (d, J = 11.9 Hz, 1H), 4.46 (d, J = 11.9 Hz, 1H), 3.80 (s, 3H), 3.57 (m, 1H), 3.45 (dd, J = 10.4, 4 Hz, 1H), 3.31 (dd, J = 7.2, 3.3 Hz, 1H), 2.25 (m, 1H) 2.03 (m, 1H), 1.31 (s, 3H), 1.33 (s, 3H), 1.20 (d, J = 6.5 Hz, 3H), 0.93 (d, J = 6.8 Hz, 3H), 0.84 (d, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₃) δ (ppm) 159.1, 142.2, 130.9, 129.3, 113.6, 113.3, 100.8, 74.4, 73.4, 70.9, 55.3, 37.0, 33.2, 25.2, 23.5, 15.7, 15.3, 12.1.

19: colorless oil, ¹H NMR (CDCl₃) δ (ppm) 7.25 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 5.65 (m, 1H), 5.10 (d, J = 17.2 Hz, 1H), 5.02 (d, J = 10.4 Hz, 1H), 4.59 (d, J = 11.7 Hz, 1H), 4.46 (d, J = 11.7 Hz, 1H), 3.80 (s, 3H), 3.54 (m, 1H), 3.45 (dd, J = 10.6, 4.1 Hz, 1H), 3.31 (dd, J = 7.1, 4.3 Hz, 1H), 2.27 (m, 1H) 1.98 (m, 1H), 1.35 (s, 3H), 1.34 (s, 3H), 1.18 (d, J = 6.4 Hz, 3H), 1.04 (d, J = 6.5 Hz, 3H), 0.85 (d, J = 6.7 Hz, 3H); ¹³C NMR (CDCl₃) δ (ppm) 159.1, 140.2, 131.0,

7

Compounds 20 and 21. To a solution of 16 (20 mg) or 17 (20 mg) in acetone-water (10:1) was added OsO4 (2.5% in 2-methyl-2-propanol, 3%) and NMO (6 equiv.). The reaction was stirred at 25 °C for 3 hours (for 16) or 12 hours (for 17). Water and CH2Cl2 was added. The organic layer was separated. The water layer was extracted by CH2Cl2 for three times. The combined organic layer dried over Na₂SO₄. The solvent was removed and the product was purified with silica gel column chromatography to afford the corresponding triol (in the case of 16, two isomers were obtained in a ration of about 2:1. The major isomer was used in the next step. In the case of 17, one isomer is by far the main product and the minor isomer was not obtained). To the triol was added anhydrous CH2Cl2, imidazole (1.5 equiv.) and TBSCI (1.3 equiv.) at 0 °C. After the reaction was stirred at 0 °C for 1 hour, NaHCO₃ was added. After standard work up with CH2Cl2, the product was purified with silica gel column chromatography to afford the corresponding diol in about 90% yields. The diols were dissolved in anhydrous CH₂Cl₂. 2,2-Methoxypropane (3 equiv.) and CSA (catalytic amount) was added. After the reaction was stirred at 25 °C for 30 min, the solvent was removed and the product was purified with silica gel column chromatography to afford 20 (from 16) and 21 (from 17) in about 90% yields.

20: colorless oil, ¹H NMR (CDCl₃) δ (ppm) 7.27 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 4.47 (s, 2H), 3.80 (s, 3H), 3.79~3.61 (m, 5H), 3.50 (m, 1H),

8

21: colorless oil, ¹H NMR (CDCl₃) δ (ppm) 7.25 (d, J = 7.8 Hz, 2H), 6.86 (d, J = 7.8 Hz, 2H), 4.52 (d, J = 11.5 Hz, 1H), 4.39 (d, J = 11.5 Hz, 1H), 3.80 (s, 3H), 3.75 (dd, J = 4.2, 9.9 Hz, 1H), 3.61~3.47 (m, 4H), 3.32 (m, 1H), 1.91 (m, 1H), 1.74 (m, 1H), 1.33 (s, 3H), 1.30 (s, 3H), 1.19 (d, J = 6.4 Hz, 3H), 1.07 (d, J = 7.0 Hz, 3H), 0.94 (d, J = 6.7 Hz, 3H), 0.89 (s, 18H), 0.05 (s, 9H), 0.01 (s, 3H); ¹³C NMR (CDCl₃) δ (ppm) 158.9, 131.2, 129.0, 113.6, 100.6, 76.9, 76.4, 75.0, 70.2, 65.6, 55.2, 38.3, 35.4, 26.0, 25.9, 23.8, 20.5, 18.4, 18.2, 16.2, 13.1, 12.5, -4.3, -4.4, -5.1, -5.2.

Compound 22. To a solution of **16** (1.12 g, 2.65 mmol) in anhydrous CH_2CI_2 (15 mL) was added Et_3N (0.6 mL, 4.24 mmol) and TESOTf (0.78 mL, 3.44 mL) in -50 °C. The reaction was gradually warm up to -30 °C and stirred at -30 °C for one hour. The reaction was quenched with saturated aqueous NaHCO₃ (10 mL). The organic layer was separated and the water layer was extracted by CH_2CI_2 (10 mL) for three times. The combined organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed and the product was purified with silica gel column chromatography to afford **22** (1.348 g, 95%) as colorless oil. [α]²⁶_D -4.17° (c 2.6, $CHCI_3$). HR FABMS m/z 559.3570 (M+Na)+, calcd for $C_{30}H_{56}NaO_4Si_2$: 559.3615; ¹H NMR ($CDCI_3$) δ (ppm) 7.26 (d, J = 8.3 Hz, 2H), 6.87 (d, J = 8.3 Hz, 2H), 5.88 (m, 1H), 5.00 (d, J = 15.1 Hz, 1H), 4.99 (d, J = 11.9 Hz, 1H), 4.51 (d, J = 11.5 Hz, 1H), 4.42 (d, J = 11.5 Hz, 1H), 3.81 (s, 3H), 3.81 (overlap, 1H), 3.68 (dd, J = 7.6, 3.4 Hz, 1H), 3.57 (m, 1H), 2.34 (m, 1H), 1.83 (m, 1H), 1.19 (d, J = 6.5 Hz), 1.00~0.95 (m, 15H), 0.89 (s, 9H), 0.63(q, J = 8.0, 6H), 0.05 (s, 3H), 0.00 (s, 3H); ¹³C NMR ($CDCI_3$) δ (ppm) 158.9,

141.5, 131.2, 129.0, 114.3, 113.6, 77.1, 76.5, 75.2, 55.2, 43.5, 40.5, 26.0, 18.3, 17.8, 14.8, 11.9, 7.2, 5.8, -3.9, -4.0.

Compound 26. To a solution of **22** (306.5 mg, 0.571 mmol) in a mixture of CH₂Cl₂ (4 mL) and buffer (pH=7, 4 mL) was added DDQ (197 mg, 0.87 mmol). The reaction was stirred at 25 °C for 4 hours and then was quenched with saturated aqueous Na₂SO₃ (3 mL). The organic layer was separated and the water layer was extracted by CH₂Cl₂ (5 mL) for three times. The combined organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed and the product was purified with silica gel column chromatography to afford **26** (223 mg, 94%) as colorless oil; [α]²³_D 12.2° (c 1.0, CHCl₃). HR FABMS m/z 417.3225 (M+H)+, calcd for C₂₂H₄₉O₃Si₂: 417.3220; ¹H NMR (CDCl₃) δ (ppm) 5.89 (m, 1H), 5.06 (d, J = 17.4 Hz, 1H), 5.03 (d, J = 9.4 Hz, 1H), 3.71 (m, 1H), 3.55~3.51 (m, 2H), 2.46(d, J = 8.7 Hz, 1H), 2.26 (m, 1H), 1.77 (m, 1H), 1.13 (d, J = 6.4 Hz, 3H), 1.05 (d, J = 6.9 Hz, 3H),0.98 (t, J = 7.7 Hz, 9H), 0.92 (s, 9H), 0.65(q, J = 7.7 Hz, 6H), 0.08 (s, 3H), 0.07 (s, 3H); ¹³C NMR (CDCl₃) δ (ppm) 140.2, 115, 78.0, 75.3, 66.1, 42.7, 42.6, 25.9, 22.7, 18.1, 17.5, 11.6, 7.1, 5.6, -3.9, -4.8.

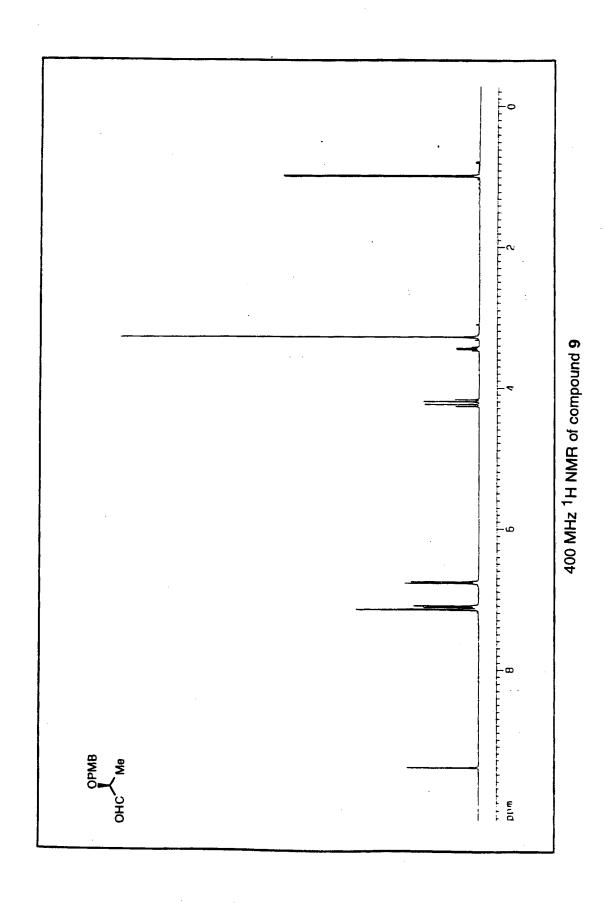
Compound 23. To a solution of PPh $_3$ (196 mg, 0.749 mmol) and HN $_3$ (1.6 mL) in THF (1 mL) was added DEAD (0.118 mL, 0.749 mmol) dropwise at 25 °C water bath.² Then 26 (132 mg, 0.32 mmol) in THF (1 mL) was cannulated to the

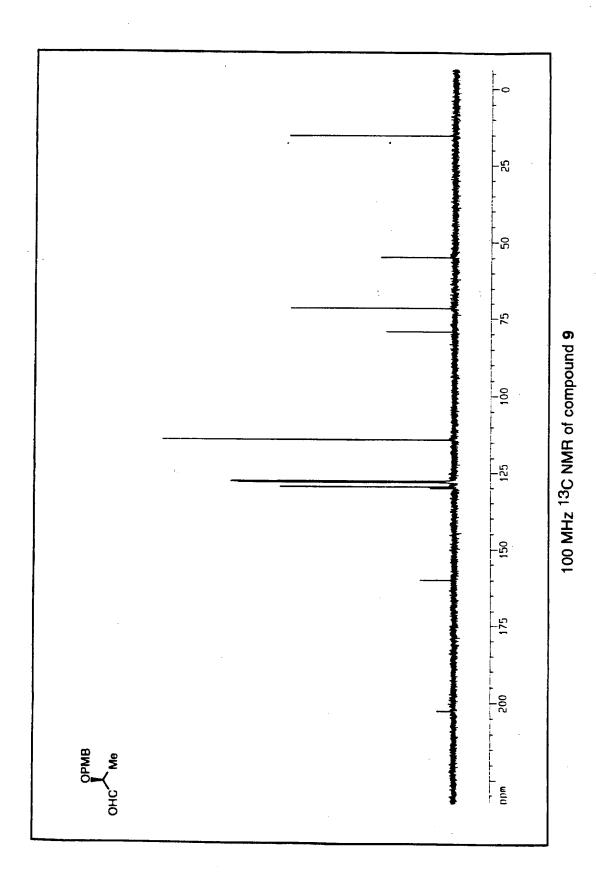
² HN₃ was prepared in the day before. It was dried over Na₂SO₄ overnight in a sealed flask and was dried further over MS3A for 30 min. before use. HN₃ which was not prepared according to

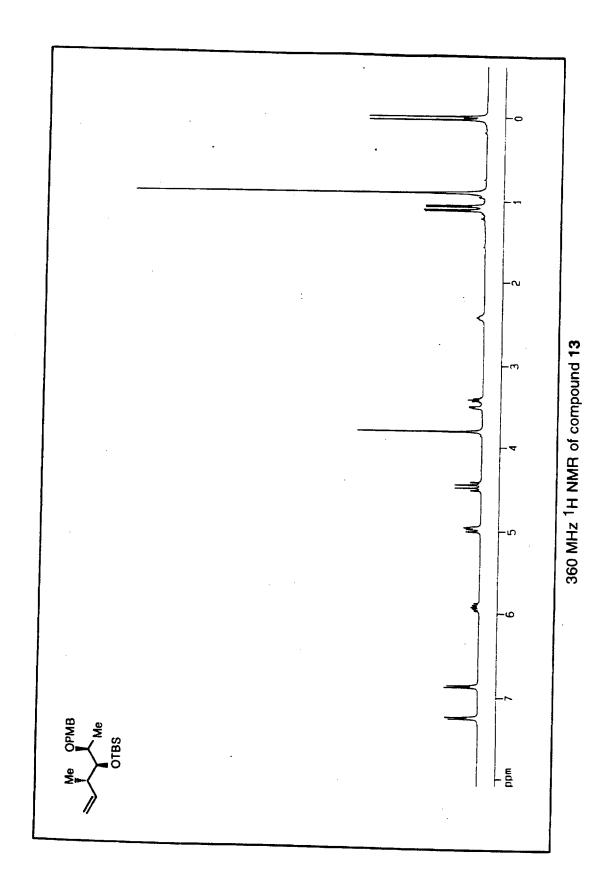
above solution.³ The reaction was stirred at 25 °C for 5 hours and the solvent was removed. The product was purified with silica gel column chromatography to afford **23** (116.3 mg, 84%) as colorless oil. [α]²⁴_D-3.8° (c 1.7, CHCl₃). HR FABMS m/z 442.3283 (M+H)+, calcd for C₂₂H₄₈N₃O₂Si₂: 442.3285; ¹H NMR (CDCl₃) δ (ppm) 5.88 (m, 1H), 5.04 (d, J = 15.5 Hz, 1H), 5.04 (d, J = 12.2 Hz, 1H), 3.73(dd, J = 5.8, 3.2 Hz, 1H), 3.62 (m, 1H), 3.55 (m, 1H), 2.35 (m, 1H), 1.72 (m, 1H), 1.24 (d, J = 6.5 Hz, 3H), 1.03 (d, J = 6.8 Hz, 3H),0.98 (t, J = 7.9 Hz, 9H), 0.98 (overlap, 3H), 0.90 (s, 9H), 0.64(q, J = 7.9, 6H), 0.10 (s, 3H), 0.08 (s, 3H); ¹³C NMR (CDCl₃) δ (ppm) 140.9, 115.2, 77.3, 75.8, 59.1, 43.7, 42.8, 26.2, 18.5, 17.9, 14.1, 11.5, 7.4, 6.1, -4.0.

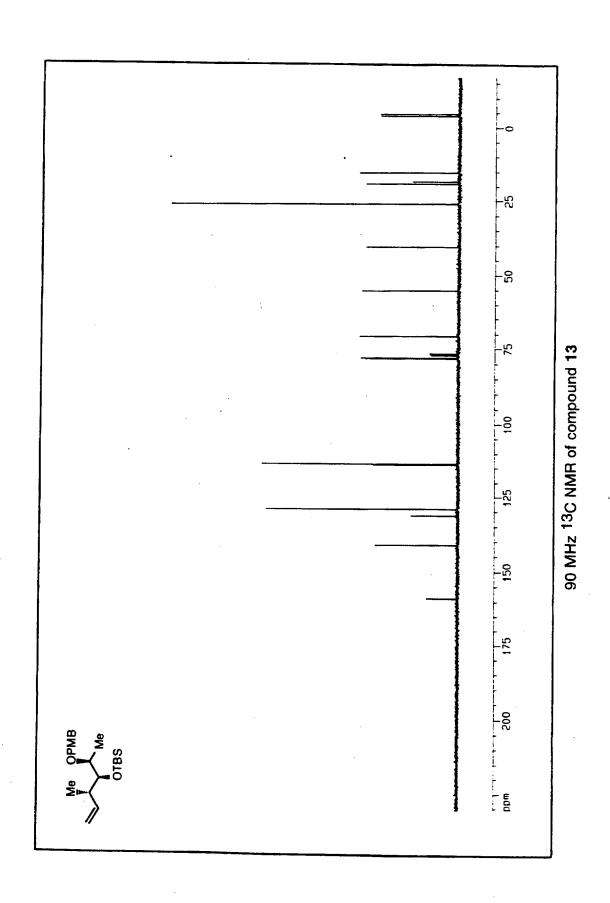
Compound 24. A mixture of **23** (84.3 mg, 0.191 mmol), triphenylphosphine (73 mg, 0.277 mmol) and water (two drops) in THF (2 mL) was heated to reflux for 12 hours. Then the solvent was removed. the water was carefully removed by adding 0.5 mL benzene and removing the benzene under rotary evaporator. This process was repeated twice. Anhydrous CH₂Cl₂ (2 mL) was added and followed by addition of Et₃N (0.3 mL, 2.13 mmol) and Ac₂O (0.03 mL, 0.32 mmol). The reaction was stirred at 25 °C for 30 min. The solvent was removed and the product was purified with silica gel column chromatography to afford **24** (74.3 mg, 85%) as white solid. [α]²⁵_D +24.0° (*c* 1.7, CHCl₃). HR FABMS m/z 480.3286 (M+H)+, calcd for C₂₄H₅₁NO₃Si₂: 480.3305; ¹H NMR (CDCl₃) δ (ppm) 5.87 (m, 1H), 5.50 (d. J = 7.6 Hz, 1H), 5.03 (d, J = 16.6 Hz, 1H), 5.02 (d, J = 11.5 Hz, 1H), 4.02 (m, 1H), 3.75(dd, J = 6.3, 2.1 Hz, 1H), 3.62 (dd, J = 6.8, 2.9 Hz, 1H), 2.51 (m, 1H), 1.94 (s, 3H), 1.78 (m, 1H), 1.09 (d, J = 6.7 Hz, 3H), 1.05 (d, J = 6.9 Hz, 3H),0.98 (t, J = 7.9 Hz, 9H), 0.95 (overlap, 3H), 0.92 (s, 9H),

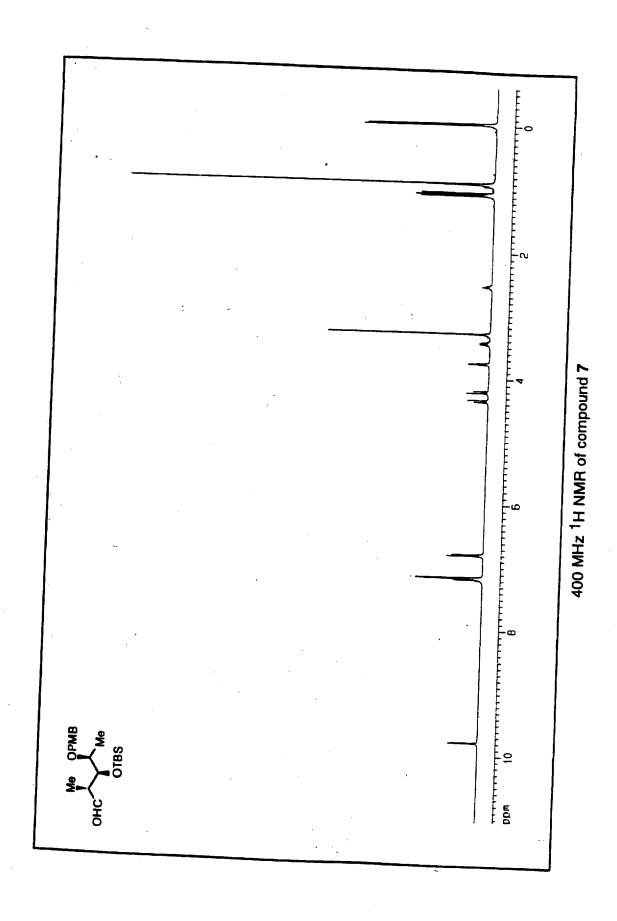
this procedure will give uncertain results, either lead to the significant formation of the intramolecular silvl transfer product or lead to no reaction.

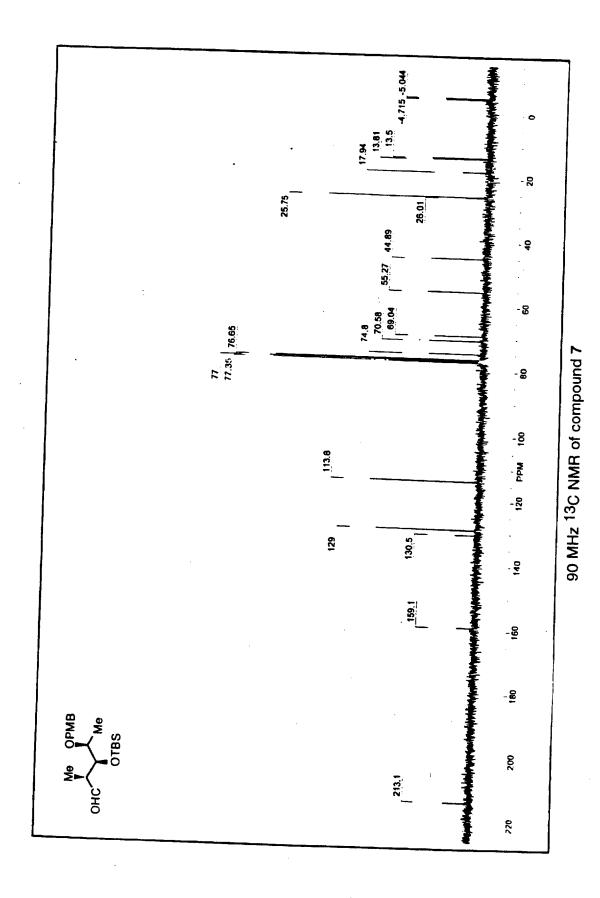

³ Premixing the alcohol with PPh₃ and HN₃ before the addition of DEAD give slightly higher ratio of intramolecular silyl transfer product.

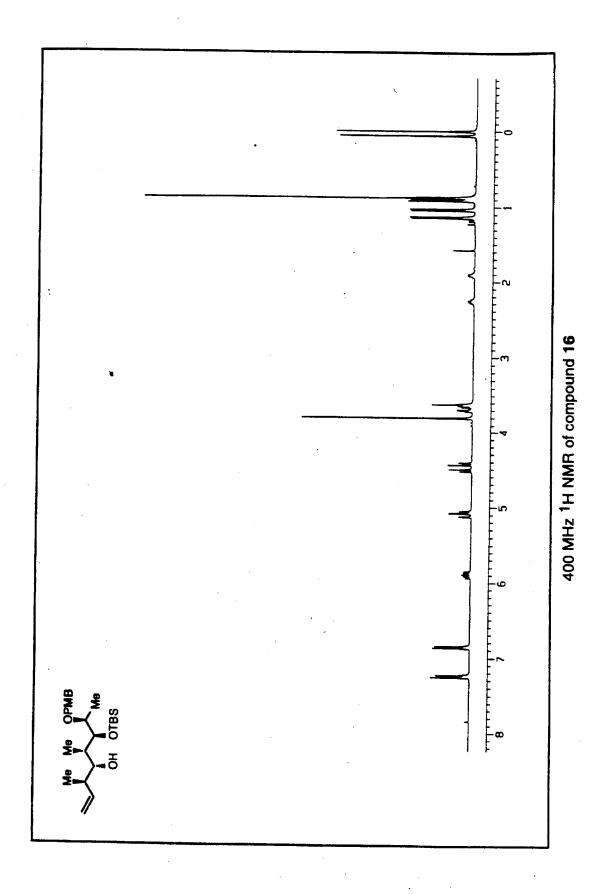

0.65(q, J=7.9, 6H), 0.05 (s, 3H), 0.04 (s, 3H); ¹³C NMR (CDCl₃) δ (ppm) 168.3, 140.5, 114.9, 74.9, 46.9, 42.6, 41.7, 25.9, 23.5, 18.3, 17.7, 15.5, 11.6, 7.1, 5.7, -3.9, -4.7.

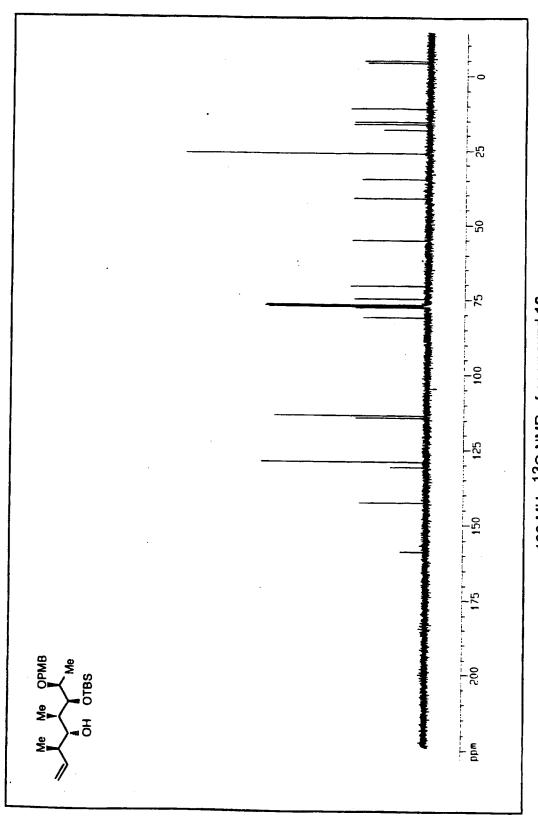

Compound 25. To a solution of 24 (32.3 mg, 0.07 mmol) in 1,4 dioxane-water (3:1,1.5 mL) was added 2,6-lutidine (0.016 mL, 0.14 mmol), OsO₄ (2.5% in 2methyl-2-propanol, 28 μL , 0.003 mmol), and NaIO₄ (75 mg). The reaction was stirred at 25 °C for 7 hours and then water (2 mL) and CH2Cl2 (3 mL) was added. The organic layer was separated and the water layer was extracted by CH₂Cl₂ (3 mL) for three times. The combined organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed and the product was purified with silica gel column chromatography to afford 25 (23.1 mg, 71 %) as white solid. $[\alpha]^{26}_D + 26.0^{\circ}$ (c 1.6, CHCl₃). HR FABMS m/z 482.3139 (M+Na)+, calcd for $C_{23}H_{49}NO_4Si_2$: 482.3098; ¹H NMR (CDCl₃) δ (ppm) 9.79 (d, J=2 Hz, 2H), 5.01 (d, J = 7.6 Hz, 1H), 4.15 (m, 1H), 4.06(dd, J = 6.8, 3.2 Hz, 1H), 3.96 (dd, J = 5.6, 2.3 Hz, 1H), 2.77 (m, 1H), 1.97 (m, 1H), 1.58 (s, 3H), 1.12 (d, J = 5.6) 6.8 Hz, 3H), 1.07 (d, J = 6.8 Hz, 3H), 0.99 (t, J = 7.9 Hz, 9H), 0.95 (overlap, 3H), 0.94 (s, 9H), 0.66(q, J = 7.9, 6H), 0.11 (s, 3H), 0.04 (s, 3H); ¹³C NMR (CDCl₃) δ (ppm) 204.1, 167.9, 76.4, 75.8, 50.7, 47.0, 43.1, 26.2, 23.1, 18.5, 12.3, 12.1, 7.3, 5.9, -4.0, -4.4.

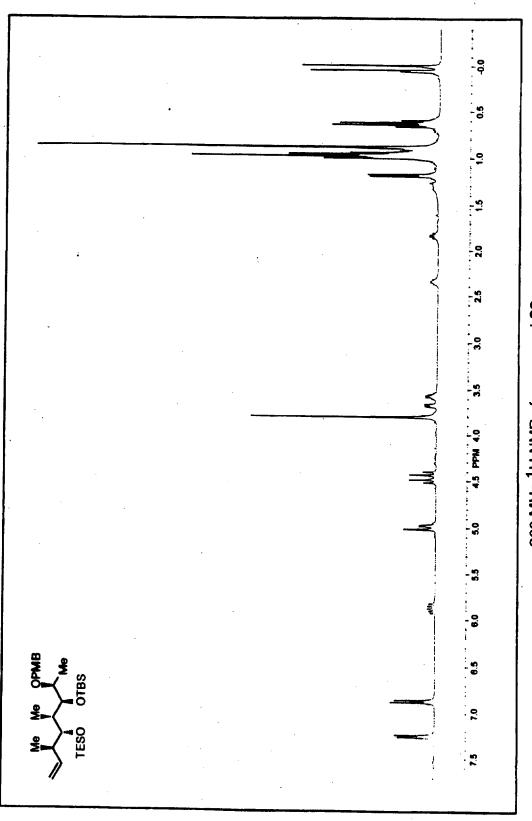

Compound 4. A 10 mL flask was charged with $CrCl_2$ (28.7 mg, 0.22 mmol) under nitrogen gas (passed through two columns filled with P_2O_5 and pyrogallol respectively) and the flask was gently flame dried with heat gun under high

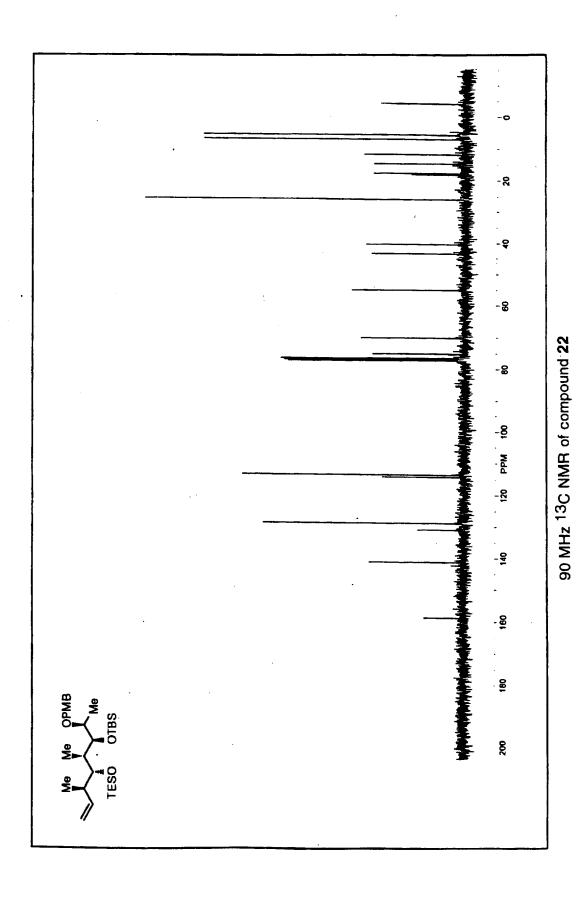

vacuum. After cooling down, it was filled with nitrogen, THF (0.3 mL) was added. Carefully dried **25** (17.0 mg, 0.037 mmol) was dissolved in THF (0.5 mL) and to this solution was added CHI₃ (29 mg, 0.074 mmol). This solution was cannulated to the CrCl₂ solution at 0 °C. The reaction was stirred at 0 °C for 1 hour and the solvent was removed. The product was purified with silica gel column chromatography to afford **4** (15.4 mg, 71%) as white solid. [α]²⁶₀ +33.3° (c 0.5, CHCl₃). HR FABMS m/z 606.2258 (M+Na)+, calcd for C₂₄H₅₀INO₃Si₂: 606.2272; 1H NMR (CDCl₃) δ (ppm) 6.82 (dd, J = 16, 10 Hz, 1H), 6.12 (d, J = 16Hz, 1H), 4.79 (d, J = 11.2 Hz, 1H), 4.04~3.97 (m, 2H), 3.66 (dd, J = 8.4, 3.2Hz, 1H), 2.90 (m, 1H), 1.91(q, J = 7.6 Hz, 1H), 1.54 (s, 3H), 1.10 (d, J = 7.2 Hz, 3H), 1.02 (d, J = 6.8 Hz, 3H), 1.00 (t, J = 7.9 Hz, 9H), 0.96 (s, 9H), 0.94 (overlap, 3H), 0.65(q, J = 7.9, 6H), 0.11 (s, 3H), 0.02 (s, 3H); ¹³C NMR (CDCl₃) δ (ppm) 167.8, 148.5, 128.6, 77.7, 76.3, 74.2, 47.2, 45.0, 43.0, 26.2, 23.1, 18.5, 17.9, 15.3, 12.1, 7.4, 6.0, -3.7, -4.5.

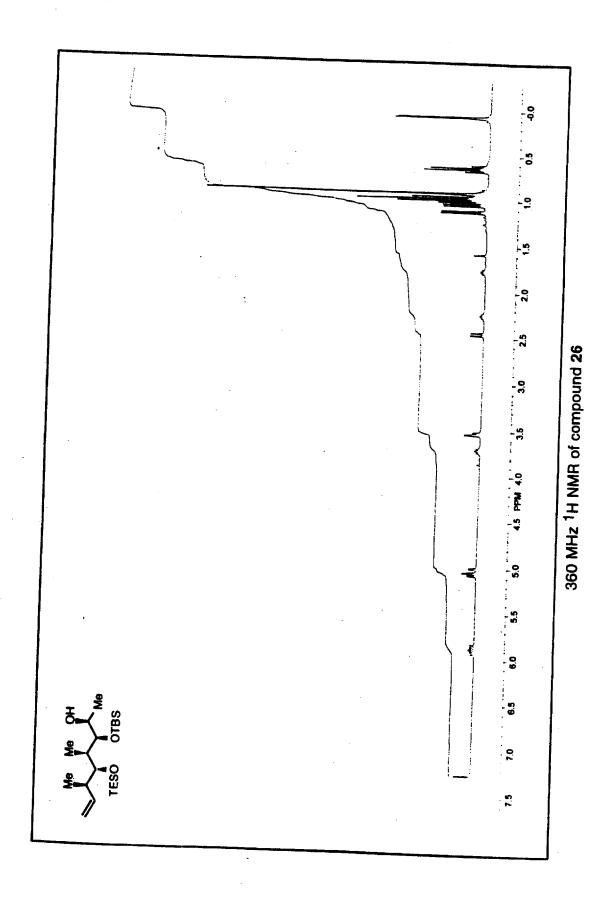


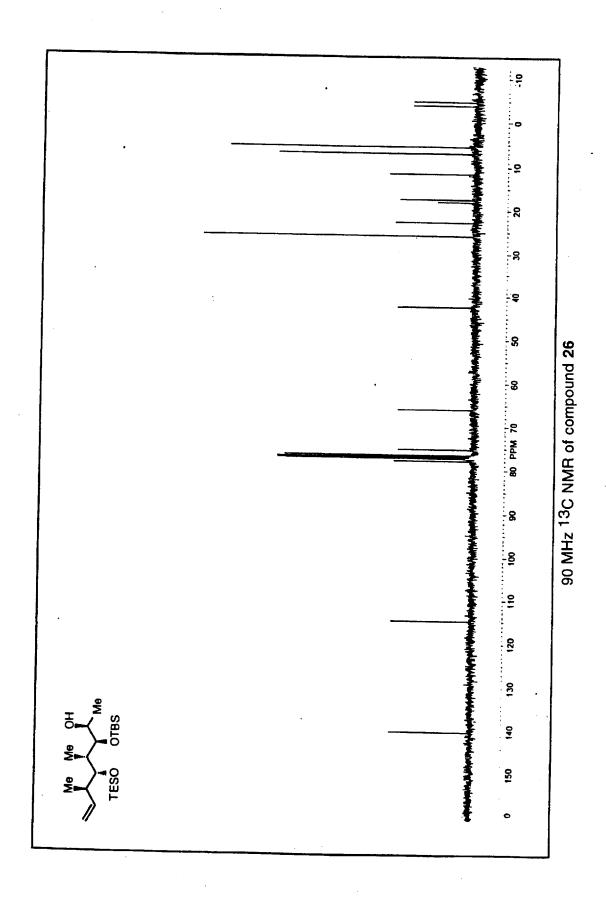


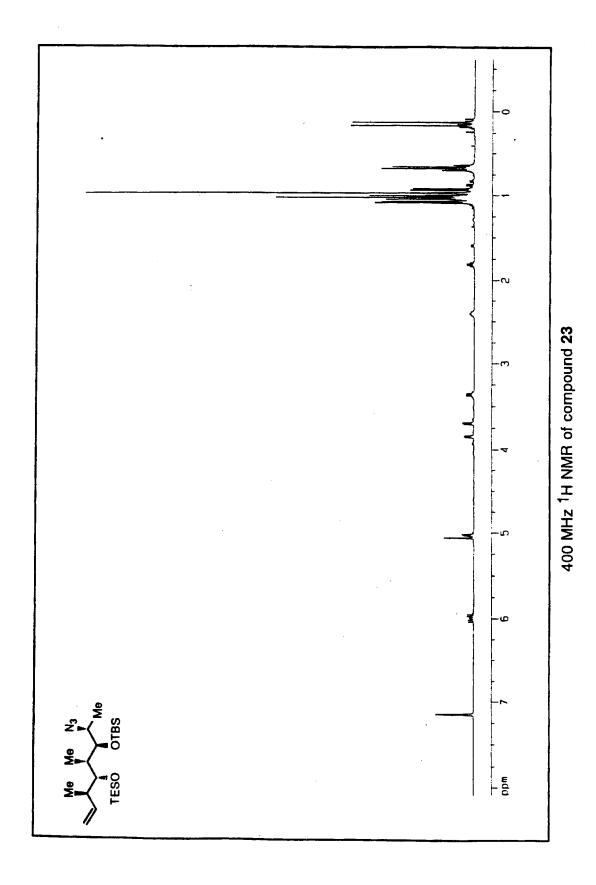




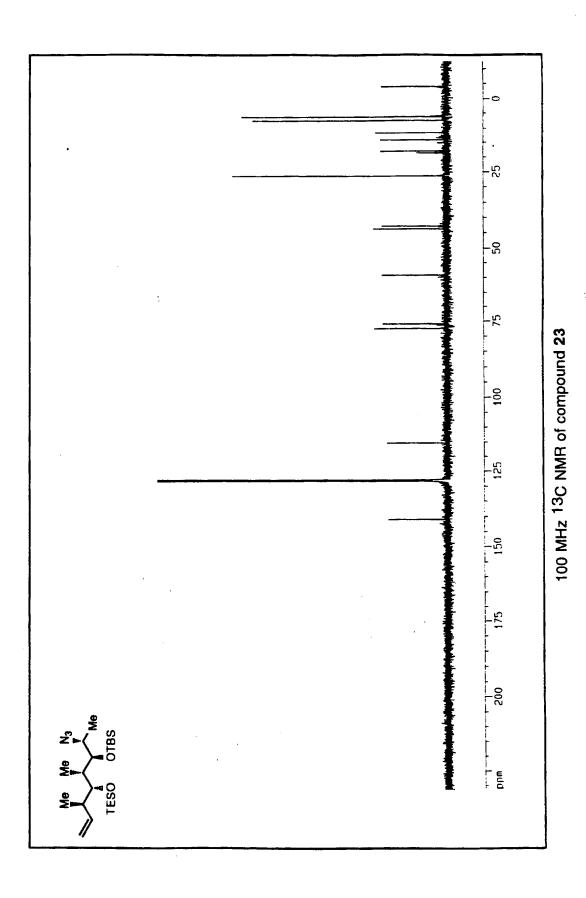


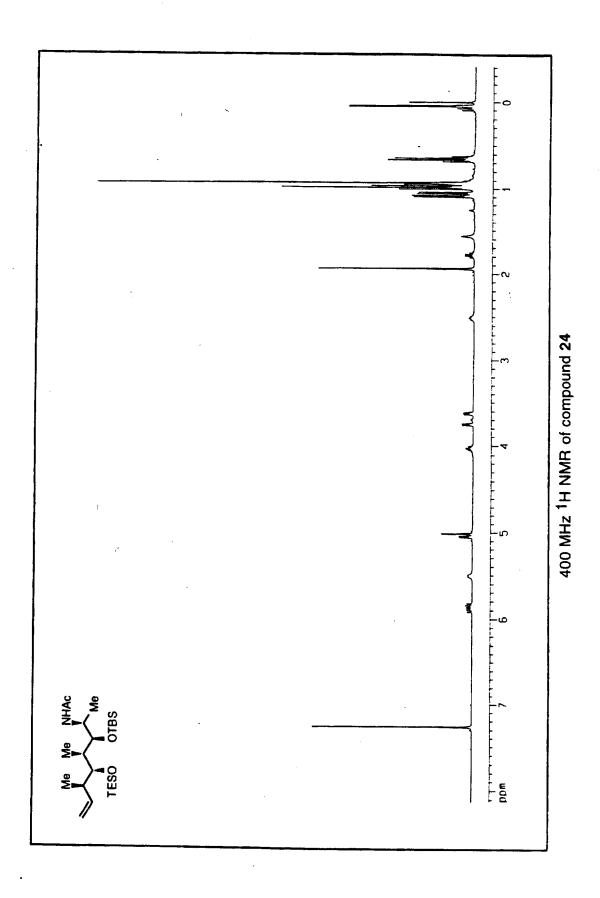


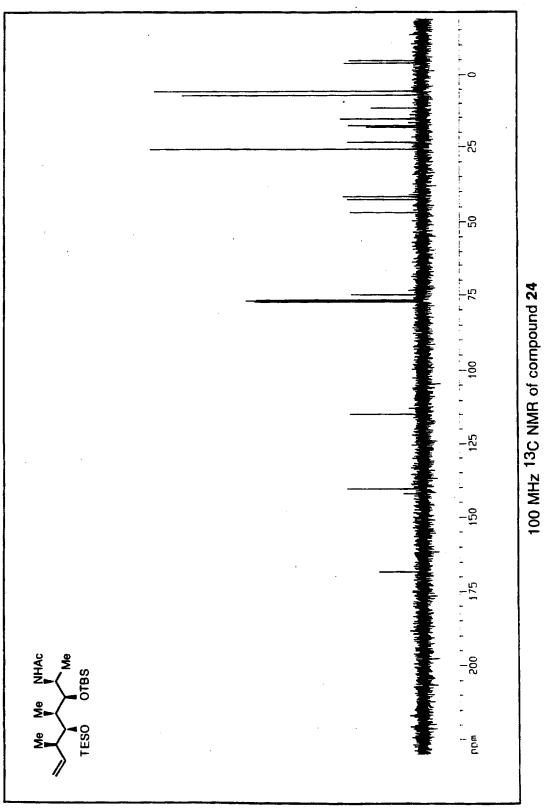

100 MHz ¹³C NMR of compound 16

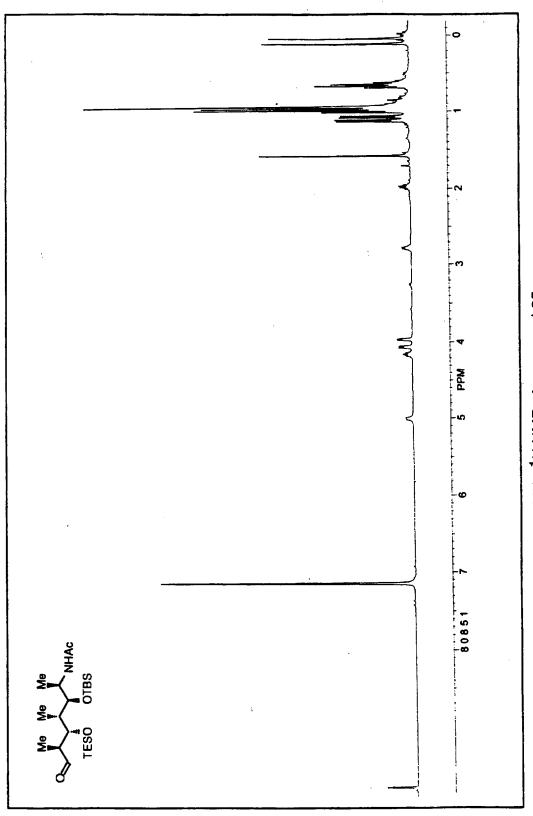


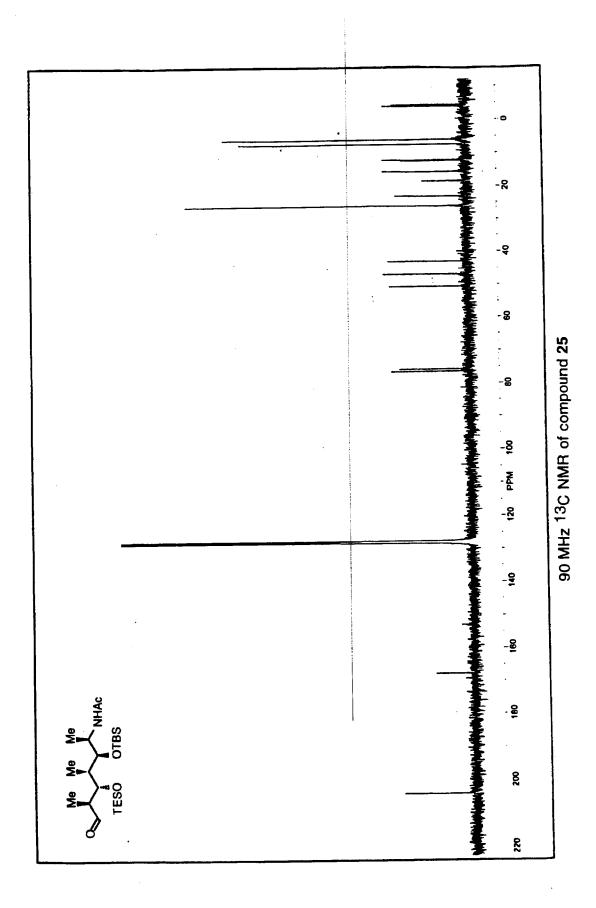
360 MHz ¹H NMR of compound 22

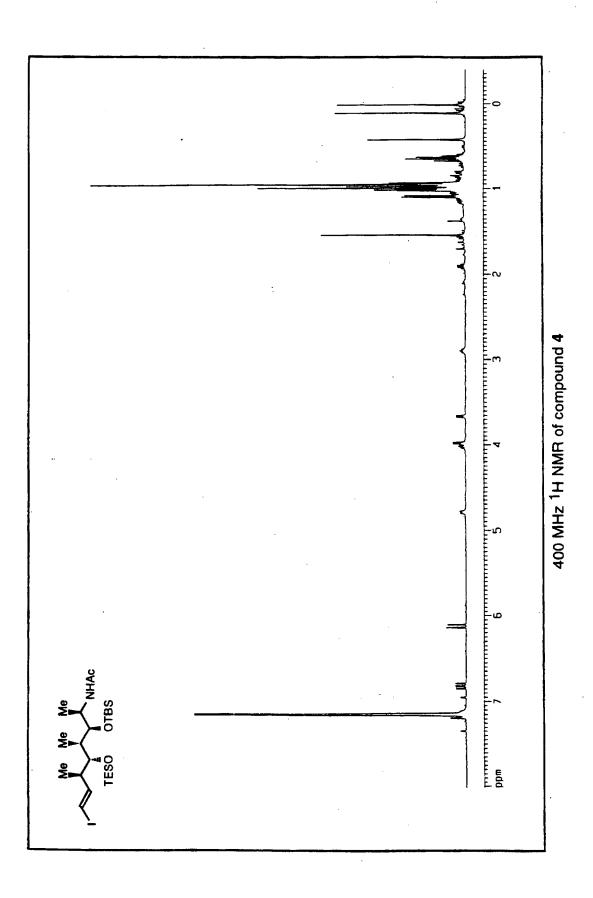


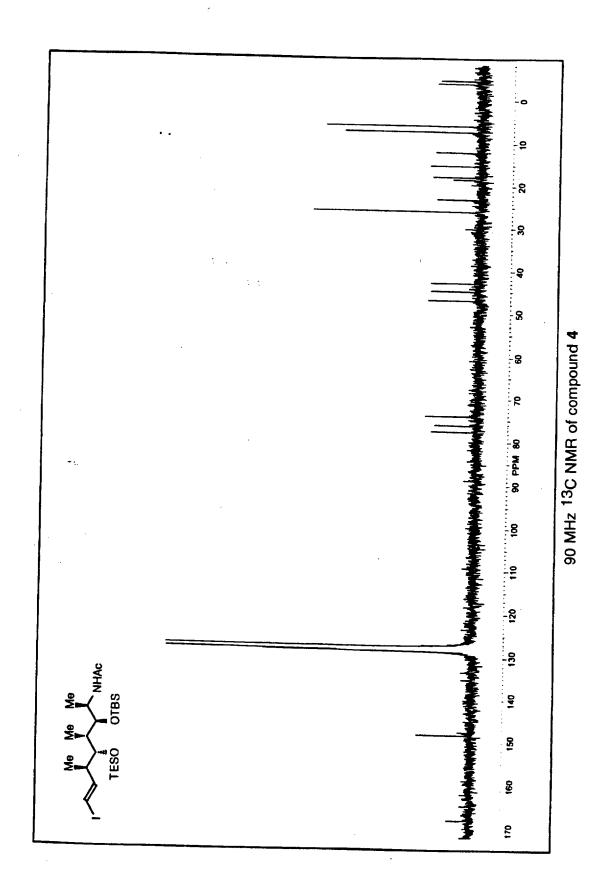












360 MHz ¹H NMR of compound 25

